The influence of maggot excretions on PAO1 biofilm formation on different biomaterials.
نویسندگان
چکیده
Biofilm formation in wounds and on biomaterials is increasingly recognized as a problem. It therefore is important to focus on new strategies for eradicating severe biofilm-associated infections. The beneficial effects of maggots (Lucilia sericata) in wounds have been known for centuries. We hypothesized sterile maggot excretions and secretions (ES) could prevent, inhibit, and break down biofilms of Pseudomonas aeruginosa (PAO1) on different biomaterials. Therefore, we investigated biofilm formation on polyethylene, titanium, and stainless steel. Furthermore, we compared the biofilm reduction capacity of Instar-1 and Instar-3 maggot ES and tested the temperature tolerance of ES. After biofilms formed in M63 nutrient medium on comb-forming models of the biomaterials, ES solutions in phosphate-buffered saline or M63 were added in different concentrations. PAO1 biofilms adhered tightly to polyethylene and titanium but weakly to stainless steel. Maggot ES prevent and inhibit PAO1 biofilm formation and even break down existing biofilms. ES still had considerable biofilm reduction properties after storage at room temperature for 1 month. ES from Instar-3 maggots were more effective than ES from Instar-1 maggots. These results may be relevant to patient care as biofilms complicate the treatment of infections associated with orthopaedic implants.
منابع مشابه
Maggot Excretions Inhibit Biofilm Formation on Biomaterials
BACKGROUND Biofilm-associated infections in trauma surgery are difficult to treat with conventional therapies. Therefore, it is important to develop new treatment modalities. Maggots in captured bags, which are permeable for larval excretions/secretions, aid in healing severe, infected wounds, suspect for biofilm formation. Therefore we presumed maggot excretions/secretions would reduce biofilm...
متن کاملSelective Antibiofilm Effects of Lucilia sericata Larvae Secretions/Excretions against Wound Pathogens
Background. Maggot debridement therapy (MDT), using Lucilia sericata larvae, represents efficient, simple, and low-cost therapy for the treatment of chronic wounds. Aim. The aim was to investigate the antibiofilm activity of maggot excretions/secretions (ES) against biofilm of wound isolates Staphylococcus aureus (S. aureus), Enterobacter cloacae (E. cloacae), and Proteus mirabilis (P. mirabili...
متن کاملLucilia sericata chymotrypsin disrupts protein adhesin-mediated staphylococcal biofilm formation.
Staphylococcus aureus and Staphylococcus epidermidis biofilms cause chronic infections due to their ability to form biofilms. The excretions/secretions of Lucilia sericata larvae (maggots) have effective activity for debridement and disruption of bacterial biofilms. In this paper, we demonstrate how chymotrypsin derived from maggot excretions/secretions disrupts protein-dependent bacterial biof...
متن کاملMaggot excretions/secretions are differentially effective against biofilms of Staphylococcus aureus and Pseudomonas aeruginosa.
OBJECTIVES Lucilia sericata maggots are successfully used for treating chronic wounds. As the healing process in these wounds is complicated by bacteria, particularly when residing in biofilms that protect them from antibiotics and the immune system, we assessed the effects of maggot excretions/secretions (ES) on Staphylococcus aureus and Pseudomonas aeruginosa biofilms, the clinically most rel...
متن کاملCombinations of maggot excretions/secretions and antibiotics are effective against Staphylococcus aureus biofilms and the bacteria derived therefrom.
OBJECTIVES Maggots of the blowfly Lucilia sericata are used for the treatment of chronic wounds. Previously we reported that maggot excretions/secretions (ES) break down Staphylococcus aureus biofilms but do not kill the bacteria. As many antibiotics are not effective against biofilms we assessed the effect of combinations of ES and antibiotics on S. aureus biofilms and on the survival of the b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical orthopaedics and related research
دوره 467 2 شماره
صفحات -
تاریخ انتشار 2009